
Remark 2. The initial and boundary conditions are dictated by the structure of the dif- 
ferential equations, and the formulation of initial and boundary-value problems is the sub- 
ject of a separate publication. 
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UNSTEADY THREE-DIMENSIONAL LAMINAR BOUNDARY LAYER ON BLUNT BODIES 

WITH STRONG BLOWING 

S. V. Peigin and B. Y. Filonenko UDC 532.526 

One must investigate unsteady heat and mass transfer in flow of a compressible gas over 
blunt bodies with a permeable surface in order to solve many applied problems. In particular, 
these problems arise unavoidably and in general are time-dependent when gas is blown through 
a porous or perforated surface in order to form a gas curtain. Similar questions arise also 
in examining a number of chemical technology facilities in various regimes of operation. 

For these reasons the literature has a number of papers in which both approximate ana- 
�9 lytical methods [i, 2] and numerical methods [3-5] have been used to study unsteady processes 
occurring in laminar planar or axisyn~metric boundary layers in a compressible gas on a perme- 
able surface. The influence of blowing (or suction) on the characteristics of the unsteady 
two-dimensional boundary layer was examined in [6, 7]. Unsteady heat transfer in the vicinity 
of a stagnation point with two radii of curvature was the subject of [8, 9], and the in- 
fluence of strong blowing on the basic characteristics of steady flow in a three-dimensional 
laminar boundary layer was examined in [10-13]. 

This paper has obtained numerical and asymptotic solutions, over a wide range of vari- 
ation of the governing parameters, of the equations of the unsteady three-dimensional laminar 
boundary layer on a permeable surface, including the case of strong blowing. 

i. Statement of the Problem. We consider three-dimensional unsteady flow of a super- 
sonic gas over blunt bodies with a permeable surface at large incident stream Reynolds number 
Re. We choose a nondegenerate curvilinear coordinate system (x I, x 2, x 3) with origin at the 
stagnation point, and normally related to the wetted surface: x 3 = const is a family of sur- 
faces parallel to the body surface (x ~ = 0), and x I and x 2 are curvilinear coordinates on 
the surface. 

Later we shall also investigate bodies for which the longitudinal pressure gradient Vp* 
obtained by solving the equations describing inviscid flow over a given body is a quantity 
of order O(p~V~/L). As is shown by asymptotic analysis of the unsteady three-dimensional 
Navier-Stokes equations for the case of hypersonic flow over bodies with blowing present and 
under the conditions 
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O~V= p=V--~ < <  t ,  Re  : - -  t~ 

the equations of the unsteady three-dimensional laminar boundary layer give an asymptotically 
correct description of the flow in the layer near the body surface. In the coordinate system 
(x i, x 2, x 3) these differ in appearance from the equations describing steady flow in a three- 
dimensional boundary layer, and given, e.g., in [13], only in respect of a number of unsteady 
terms: in the continuity equation one must add the term /gSp/St, and in all the others re- 
place the operator D by D* - D + ~/3t. These equations are solved with the boundary condi- 
tions 

x a - - ,  oo: u = u d x  i, x ~', t) ,  w = w~(x l, x 2, t)~ T = T~(x 1, x 2, t) ;  ( 1 . 2 )  

x 3 = 0: u = uw (x 1, :G t), u, = ww (x ~, x ~, t),, T = rw (x ~, x ~, t), (I . 3 )  

pv = G (x I, x ~, t),  l i r a  u~,  < oo, l i r a  u%_ < co.  
~r I/'8 xl,x2"~O //)e 

For convenience of the numerical solution of the problem we convert in the original 
coordinate system and the boundary conditions to variables of the A. A. Dorodnitsyn type, 
with which we can resolve singularities at the stagnation point and also in the symmetry 
planes of the flow investigated: 

x 3 

~=xl, ~l=z~, ~ = T  
(i.4) 

u* : u Oq)~ w* w 0 ~  T gtp 
, , - 7 = ~ '  - w - 7 = ~ - , .  o = ~ , .  z=~m.. 

In the variables of Eqs. (1.4) the original system of equations and boundary conditions 
takes the form (we drop the superscript *) 

(lu{){ =- Du + [ii (u ~ -- O) + ~ (w 2 -- O) + ~ (~w-- O) + ?~ (u -- O), 

( Iw'~)'~ = D w  + ~a (w: - -  O) + [~ (u" - -  (3) + [~ (uw - -  O) + ?, (w - -  O),: 

(+ ) , ,  
o o o , , ~ " 0  

~-~: u=w=O=l; 
r t 

(1.6) 

(1.7) 

We shall not give expressions for the coefficients of Eqs. (1.5). We note only that they 
are known functions and depend on the time, the geometry of the wetted body and the pressure 
distribution along its surface. 

2. Asymptotic Solution of the Problem with Strong Blowing. We consider the case when 
the blowing parameter, ordinarily used in laminar boundary layer theory [10-13], fw = /R~e • 
PwVw/P~V~ will be rather large. Then the problem becomes singular and we must solve it by 
the method of matched asymptotic expansions [14]. The boundary layer is divided into a 
blowing layer attached to the body, where the effects of molecular transport are insignifi- 
cant in the first approximation, and a mixing layer where they play the major role. 

Blowing Layer. The flow in the blowing layer is described in the first approximation 
by the system of equations 

0( v :)0 
p ( D u  n u A l u  ~ -~ A2w ~ JC Aauw)  = A4,- 
p ( D w  q- B l u  2 -b B2w 2 q- B3uw) = B4~ ( 2 . 1 )  

p D T  = "~----ii DOp, x ~--" x*, y -~- x 2, z ~-  x 3, 
Y 

which is solved with the initial conditions 

t = O: u = u~ y,  z), w = u~(x, y,  z), T = T~ y,  z), v = v~ y ,  z) ( 2 . 2 )  
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(the superscript zero denotes the steady solutions of the system (2.1), given in [ii, 12]). 
As boundary conditions for the system (2.1) we take conditions (1.3) on the body surface. 

We consider the case when the pressure at the outer edge of the boundary layer and the 
gas temperature at the stagnation point are independent of time: 

o~ O, or. 
o-7= .~ -  (0, O ) = 0 .  ( 2 . 3 )  

Then t h e  s o l u t i o n  o f  t h e  s y s t e m  ( 2 . 1 ) ,  ( 2 . 2 )  and  ( 1 . 3 )  i n  t h e  v i c i n i t y  o f  t h e  s t a g n a t i o n  
point can be written in the quadratures: 

I 1 
e x p  [2 (t Tg (~))],~ (u (t, ~) 1) (u  @) + t) 

(w (t, x) --  1) (w (x) + l) I = exp [2o: (t - -  ~g (x))], I 
g 

z (t, ~) ---- x (g (x) - -  t) + S vdt,~ 
~g(~) 

v (t, "r) = V ('r) -- y (u + aw)  dz,~ 
%(g(g)--l) 

U (~) = / Uw (~), I; ~> O, W (%) = / ="  (~)' 
l U~ * < 0 ,  [~~  ~),: 

V (~) = / ~" (~1' ~ >~ 0, ~ =  { t*, ~/> 0,; 
(v~ ~<0 , .  z*,. ~ < 0 ~  

~<O, j  

g (~) ---- + ( s g n  ('~) + I)~ 

( 2 . 4 )  

y--I ]/P_t" p =  = __ _ - ~ -  p~ 
[ P 2 x '  

Here t*, z* are the coordinates t and z of the exit of the characteristic of the system (2.1) 
�9 --ll2u,. in the (t, z) plane with the coordinate lines z = 0 and t = 0, respectively; u I = p2x =, w, 

p--ll~ w,. ~11~ z. ~1/~. ~y u, zl = ~x , t, ----- ~2x,, and the subscript 1 is omitted The values of all the quantities on 
the dividing stream line are obtained from Eqs. (2.4), if there we put T = -z ~ (z ~ is the co- 
ordinate z of the dividing stream line at the stagnation point in the steady solution). 

In the general case the solution for the profiles of velocity and temperature in the 
blowing layer can be found either numerically or in the form of series in the normal coor- 
dinate z. 

On the body surface we have asymptotic formulas for the components of the friction 
stress and the heat flux: 

/Ou w o% + w w ou__w,~] 
o.] = ~ [l ,--(Alu~+A~w.~ A~uww.) - - P . ~ +  "~ - -  J': 

I [ ( ~176176 "~ ~176176 

Mixing Layer. In the vicinity of the dividing stream line z = z~(x, y, t) in the layer 
where the blown gas mixes with the oncoming stream Eqs. (2.1) becomes unsuitable. It can be 
shown that the equations governing the mixing layer structure coincide in form with the orig- 
inal equations of the unsteady three-dimensional boundary layer, if there we replace v by 
V ~ v - D~ ~. The boundary conditions here are the following: 

U-'+ Ue, W'-+ W e, T--)-  Te ~r Z-->- oo, 

u-- , -  u_,  w-- , -  w_,  T - + T _  ~r  z-- , -  - - o o ,  

V = 0 ~r z = O, 

and u_(x, y, t), w_(x, y, t), T_(x, y, t) are determined by solving the outer problem in the 
blowing layer on the dividing stream line. Here, as can be seen by analyzing the solution 
of the outer problem, if conditions (2.3) hold, then in the first approximation the structure 
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of the mixing layer in the variables of Eqs. (1.4) does not depend on time and coincides with 
the steady-state solution obtained in [II, 15]. 

3. Numerical Solution of the Problem. Discussion of the Calculated Results. The sys- 
tem of equations (1.5)-(1.7) was solved numerically on a computer. We used an implicit dif- 
ference scheme of fourth order accuracy in the coordinate ~, a generalization of the scheme 
[16] for three-dimensional unsteady flow in the boundary layer. We considered flow at zero 
angle of attack over an elliptic paraboloid whose surface in a rectangular coordinate system 
(yl, y2 y3) has an equation of the form 

y~ = 0,5[(y~)~ + k~(y2)~], ( 3 . 1 )  

where k is the ratio of the principal radii of curvature of the body at the stagnation point. 
The incident flow was considered hypersonic and steady-state, and the pressure at the outer 
edge of the boundary layer was determined by the Newtonian formula. The coordinates (x I, x 2) 
on the body surface were chosen analogously to [13], and the governing parameters of the 
problem were varied in the range 

0.01<~k~<1, o . 1 ~ o ~  0.5, 0.5~<~<~t.0, ~=0.71, ( 3 . 2 )  
0~<--F~ < 5 .  

Here the mass flow rate of gas through the surface F w and its temperature Ow are piecewise 
smooth functions of 5, q, ~, and allow discontinuities of the first kind. 

During the solution we found the profiles of velocity and temperature across the bound- 
ary layer, and also the coefficients of friction and heat transfer 

a~ aw ao (3.3) c~-----~-~, c~----~-bT , cq~-'~--~. 

We now consider flow in the vicinity of the stagnation point with two radii of curva- 
ture. As an example we take the continuous and discontinuous dependences of Fw, @w on time: 

F w = F ~ - - s i n  2T, F,~----{ al (T-----0), a~ (T > 0); ( 3 . 4 a , b )  

b (T = 0), 
= b l+b~T (0<T<~To) ,  

b 1 + b2T 0 (T > To), (3.5a) 

| cl (~ = 0) ,  
O~ 

c 2 (T>0) (3.5b) 

(Here the ai, bi, and c i are constants.) 

Some results of the calculations are shown in Figs. 1-3. Figure i shows the profiles 
of u (lines I, 2, and 4) and w (lines 3, 5, and 6) across the boundary layer for T = 0.03; 
3.3; 10.3 (lines 4 and 6; 2 and 5; and i and 3, respectively) for k = 0.5, F w = --i0, ~= 0.5, 
7 = 1.4 and with O w given by the law of Eq. (3.5a) (bl = 0.i, b2 = i, To = 0.15); the 
broken lines show the asymptotic solution of the problem in the two layers, 

It can be seen that although for T > t 0 the body surface temperature Ow does not depend 
on time, the structure of the layer of blown gases depends for quite a long time on the time. Here, 
as follows from the asymptotic solution, inside the blowing layer local extrema are formed 
in the profiles of velocity and temperature. On the whole by analyzing the solutions ob- 
tained we can draw the conclusion that, as in the steady-state case [13], the asymptotic 
solution has good accuracy for -F w s 3-5. 

The calculations made allow a number of interesting flow laws to be identified. Firstly 
one should note that the absolute values of the coefficients of friction and heat transfer on 
the body surface depend strongly on the governing parameters of the problem. For example, 
with the boundary conditions given in the form of Eqs. (3.4a) and (3.5a) the variation of 
c~, Cq with increase of k from 0.01 to 1 was 40-50Z. However, the relative values of the 
components of the friction stress and the heat flux, referenced to their steady-state values 

c~ (~) %(~) cq (~) 
4 = 4  -je 4 ( 3.6 ) 
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are appreciably more conservative, and depend only slightly on a number of the governing 
parameters of the problem. 

0 0 
Firstly, as shown by the calculations, c~, cN, Cq are practically independent of the 

geometrical parameter k. For example, with F w given according to the law of Eq. (3.4a) the 
value of c 4 found with k = 0.01 differs from the value of c 4 calculated with k = 0.75, by 

0 
1.5-2%. The corresponding variation of c~, cD was 2-4%. Secondly, these characteristics 
depend weakly on the parameters 7, ~. 

As an example subject to the above flow laws we can take Fig. 2, which shows c~ as a 
function of time for various laws for Fw(T) and @w (~). Here lines 1 and 2 correspond to the 
boundary conditions (3.4a) (F~ = -4); line 3 corresponds to conditions (3.4a) (F~ = -4); 
(3.5a) (b i = 0.i, b 2 = 0.25, ~0 = 0.6); the broken lines correspond to the asymptotic solution 
with strong blowing; line I for k = 0.01, ~w = 0.25, 7 = 1.4; line 2 for k = 0.5, ~w = 0.1, 
7 = i.i; line 3 for k = 0.75, ~ = 1.2. Figure 3 shows the analogous dependences of c~ and 
c 4 (lines 1-3 and 4-6, respectively) for the boundary condition (3.4a) (F~ = -0.5) and 
steady-state surface temperature. Here curves 1 and 4 are for k = 0.5, Ow = 0.1, 7 = 1.4; 
curves 2 and 5 for k = 1.0, @w = 0.25, T = 1.2; curves 3 and 6 for k = 0.I, Ow ffi 0.2, 7 = i.i. 

0 
Starting from the noted weak dependence of c~, cN, c 4 on the ratio of the principal 

radii of curvature of the body at the stagnation point k, we can suggest the following for- 
mula for calculating the absolute unsteady values of the components of the friction stress 
and the heat flux on the body surface in the vicinity of the stagnation point: 

c~ (k, ~) = c~ (k) 4 (i, ~),: c~ (k, ~) = c~ (k) c~ (t, ~), ( 3.7 ) 
cq (k, ~) = ~; (k) ~ (t, ~), 

where c ~ ( k ) ,  c ~ ( k ) ,  c~(k)  a r e  de t e rmined  from the  s t e a d y - s t a t e  s o l u t i o n  of  t he  problem and 
"' ~ 0 0 0 T e can be calculated from analytical formulas [13]; and c~(l, ~), c (i, ~), c (i, ) are th �9 ~ q 

relative values of the components of friction stress and heat flux calculated for flow over 
an axisymmetric body. From Eqs. (3.7) we can calculate c~, cN, cq for arbitrary k, knowing 
only the corresponding solutions for the axisymmetric case. Comparison of Eqs. (3.7) with 
the numerical solution over a wide range of variation of k, y and the coefficients in condi- 
tions (3.4) and (3.5) has shown that their maximum difference does not exceed 7-8%. 

We consider the flow in the vicinity of the plane of symmetry y2 = 0. The surface tem- 
perature was considered to be steady-state, and the blowing parameter F w as a function (in- 
cluding also a discontinuous function) of time and the coordinate ~ = yZ. During the calcu- 
lation, in addition to the profiles of velocity and temperature we also determined the rela- 
tive coefficients 

%(~i~) %(~'~) qO= ~(~'~) 
~ = c~ (~, 0)' ~% = % (~, 0~': cq (0, ~ ~ (3.8) 

for which the values at the stagnation point coincide with the corresponding values deter- 
mined from Eq. (3.6). Some typical examples of the distribution of q0 for k = 0.25, ~ = 0.5, 
$ = 1.4 and other methods of assigning F w = Fw(~, T)and Ow are shown in Figs. 4 and 5: Fig. 
4 shows the continuous dependence of F w on time in the form of Eq. (3.4a) (F~ = -0.5) for 
Ow = 0.i; and Fig. 5 shows the calculation when Om ffi 0.25, F w = -0.5 (for T < 0.45 and 0.05 

~ 0.25) and F w = 0 (in the remaining cases). 

The comparisons show that the presence of a discontinuity in the vectorial velocity of 
0 q0 the blown gas in both time and space has a strong influence on the character of ~, ~n" " 
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Fig. 4 Fig. 5 

However, from the calculations performed, on the whole one can conclude that the influence 
of the discontinuious character of the dependence of the boundary conditions on time and the 
spatial coordinates is localized to a great degree in the vicinity of the affected points or 
lines of discontinuity. An analogous result for steady flows in the three-dimensional bound- 
ary layer in the presence of a partially permeable section of the surface was obtained in 
[ 1 7 ] .  
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DISTRIBUTED INJECTION OF A GAS INTO A HYPERSONIC FLOW 

I. I. Lipatov UDC 532.526 

Distributed surface injection of a gas is used to reduce heat flows to the surface of 
aircraft traveling at high supersonic velocities. The injection changes the effective form 
of the surface and can therefore be used to create aerodynamic forces and moments. The lat- 
ter case is characterized by velocities normal to the injection surface which are an order 
of magnitude greater than the vertical velocity in the boundary layer on an impermeable sur- 
face. Flow regimes with intensive injection have been studied in several investigations, a 
survey of which is offered in [i]. At the same time, for the goal of protection from heat- 
ing, it is optimum if the flow rate of the injected gas is comparable to the flow rate in the 
boundary layer on an impermeable surface, since the intensity of the injection ensures a 
reduction in heat flux in the dominant term. In this case, flow near the permeable surface 
is described by a system of boundary-layer equations. Hypersonic flows are characterized 
by the highest heat fluxes, and this is particularly true for the regime of strong hypersonic 
interaction. 

Studies of flows for this regime have been limited mainly to examining problems with 
boundary conditions, which provide for a reduction in the system of boundary-layer equations 
to a system of ordinary differential equations [2]. At the same time, the distribution of 
injection rate realized in practice makes it necessary to solve problems which are not self- 
similar. An example of the solution of such problems is given in the present study. 

There is yet one more circumstance which makes the study of flows with injection par- 
ticularly important. In classical boundary-layer theory, there are two types of singularities 
in the solution. These singularities are connected with the vanishing of skin friction and 
with alteration of the structure of the flow. In the first case, friction decreases to zero 
and a region of reverse currents is formed (the boundary layer separates) due to an unfavor- 
able pressure gradient. In the second case, distributed injection causes friction to vanish 
and a region of inviscid boundary flow to form (the boundary layer is detached). The struc- 
ture of flow in the boundary layer is determined by diffusion and convection associated with 
vorticity. At large Reynolds numbers, the distance over which the vorticity diffuses from 
the solid surface is much less than the distance over which the vorticity is transported 
along the surface by convection [3]. Stagnation of the fluid under the influence of an un- 
favorable pressure gradient leads to development of the convective mechanism of vorticity 
transport from the surface and to restructuring of the flow in the boundary layer. Such con- 
vection also develops as a result of surface injection. The solutions of the system of bound- 
ary-layer equations near points of zero friction were described mathematically in [4, 5]. 
Analysis of these solutions showed that a large unfavorable pressure gradient, induced by the 
displacement thickness in the external flow, develops in the vicinity of points of zero skin 
friction. By allowing for the interaction of the boundary-layer flow with the external flow, 
it was possible for investigators to obtain a smooth solution which passed through the sepa- 
ration point in supersonic [6, 7] and subsonic [8] flows. It later turned out that allowing 
for an induced pressure gradient in acomposite system of boundary-layer equations makes it 
possible to also eliminate the singularity for the solution which describes flow with dis- 
tributed injection [9]. The solution obtained in [9] corresponded to the regime of weak in- 
teraction, and the induced pressure gradient began to have an appreciable effect only after 
skin friction was reduced to nearly zero. The strong interaction regime is characterized by 
the fact that the boundary-layer flow and the inviscid external flow influence each other 
along the entire surface of the body. Thus, if it exists at all, the phenomenon of boundary- 
layer detachment should have several features which will distinguish it from the analogous 
phenomenon in the weak interaction regime. It is the analysis of these features which is the 
focus of this article. 
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